

Innovators in 3D printing



# **Technical Data Sheet**

# PolySonic<sup>™</sup> PLA Pro

# www.polymaker.com

V5.4



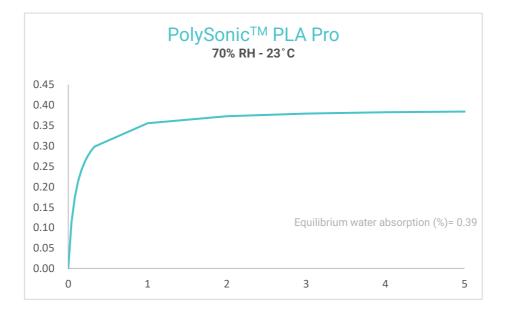
PolySonic<sup>™</sup> PLA PRO is a tough PLA that can print at incredible speeds. With its advanced formulation, this filament ensures durable, rugged prints, with an impact strength similar to ABS and bending strength outperforming ASA & PETG. When time is of the essence for functional parts, PLA PRO is the ideal choice for you.

#### **PHYSICAL PROPERTIES**

| Property           | Testing Method    | Typical Value                    |
|--------------------|-------------------|----------------------------------|
| Density            | ISO1183, GB/T1033 | 1.23 g/cm <sup>3</sup> at 21.5°C |
| Melt index         | 210°C, 2.16 kg    | 15.5 g/10min                     |
| Light transmission | N/A               | N/A                              |
| Flame retardancy   | N/A               | N/A                              |

#### CHEMICAL RESISTANCE DATA

| Property                  | Typical Value |
|---------------------------|---------------|
| Effect of weak acids      | Good          |
| Effect of strong acids    | Poor          |
| Effect of weak alkalis    | Fair          |
| Effect of strong alkalis  | Poor          |
| Effect of oils and grease | Good          |


Note:

- Good: Material may get minor attack after long periods of storage with chemical at ambient temperature

Fair: Material can be used for short time contact with chemical at ambient temperature

- Poor: Material becomes unstable on contact with chemical at ambient temperature

#### MOISTURE ABSORPTION



#### THERMAL PROPERTIES

| Property                     | Testing Method     | Typical Value |
|------------------------------|--------------------|---------------|
| Glass transition temperature | DSC, 10°C/min      | 61 °C         |
| Melting temperature          | DSC, 10°C/min      | 164 °C        |
| Crystallization temperature  | DSC, 10°C/min      | 96 °C         |
| Decomposition temperature    | TGA, 20°C/min      | 370 °C        |
| Vicat softening temperature  | ISO 306, GB/T 1633 | 61 °C         |
| Heat deflection temperature  | ISO 75 1.8MPa      | 52 °C         |
| Heat deflection temperature  | ISO 75 0.45MPa     | 55 °C         |

## MECHANICAL PROPERTIES – Classic Speed

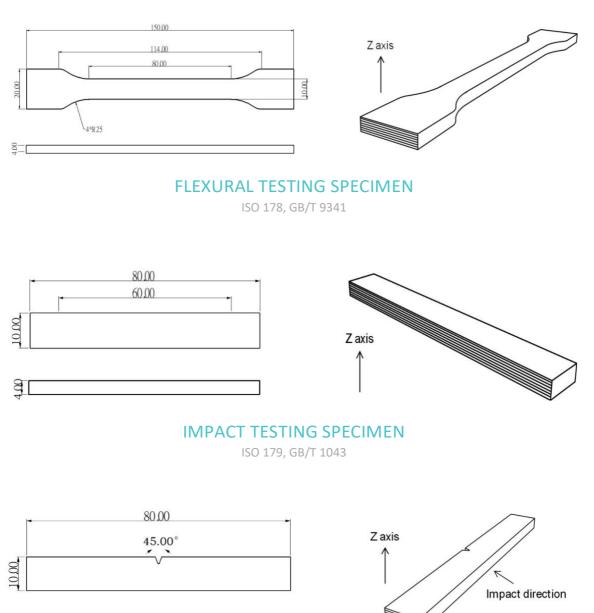
| Property                  | Testing Method     | Typical Value                |
|---------------------------|--------------------|------------------------------|
| Young's modulus (X-Y)     | ISO 527, GB/T 1040 | 2360.0 ± 30.1 MPa            |
| Young's modulus (Z)       |                    | 2283.3 ± 32.1 MPa            |
| Tensile strength (X-Y)    | ISO 527, GB/T 1040 | 41.2 ± 0.6 MPa               |
| Tensile strength (Z)      |                    | 33.6 ± 0.5 MPa               |
| Elongation at break (X-Y) | ISO 527, GB/T 1040 | 23.4 ± 6.3 %                 |
| Elongation at break (Z)   |                    | 4.9 ± 1.1 %                  |
| Bending modulus (X-Y)     | ISO 178, GB/T 9341 | 2688.7 ± 26.1 MPa            |
| Bending modulus (Z)       |                    | N/A                          |
| Bending strength (X-Y)    | ISO 178, GB/T 9341 | 67.5 ± 0.7 MPa               |
| Bending strength (Z)      | 130 176, GD/1 9341 | N/A                          |
| Notched Charpy impact     |                    | 22.7 ± 2.5 kJ/m <sup>2</sup> |
| strength (X-Y)            | ISO 179, GB/T 1043 |                              |
| Notched Charpy impact     | 130 179, 30/1 1043 | N/A                          |
| strength (Z)              |                    |                              |

\* Based on 0.4 mm nozzle and 0.2mm layer thickness. Classic printing speed = 46.7mm/s, printing temperature = 210 °C

## MECHANICAL PROPERTIES – High Speed

| Property                  | Testing Method     | Typical Value                |
|---------------------------|--------------------|------------------------------|
| Young's modulus (X-Y)     | ISO 527, GB/T 1040 | 2305.7 ± 42.9 MPa            |
| Young's modulus (Z)       |                    | 2102.9 ± 74.3 MPa            |
| Tensile strength (X-Y)    | ISO 527, GB/T 1040 | 39.3 ± 0.5 MPa               |
| Tensile strength (Z)      |                    | 31.9 ± 0.5 MPa               |
| Elongation at break (X-Y) | ISO 527, GB/T 1040 | 17.9 ± 5.2 %                 |
| Elongation at break (Z)   |                    | 3.8 ± 0.2 %                  |
| Bending modulus (X-Y)     | ISO 178, GB/T 9341 | 2544.5 ± 27.0 MPa            |
| Bending modulus (Z)       |                    | N/A                          |
| Bending strength (X-Y)    |                    | 64.1 ± 0.6 MPa               |
| Bending strength (Z)      | ISO 178, GB/T 9341 | N/A                          |
| Notched Charpy impact     |                    | 19.4 ± 3.4 kJ/m <sup>2</sup> |
| strength (X-Y)            | ISO 179, GB/T 1043 |                              |
| Notched Charpy impact     | 130 179, GD/1 1043 | N/A                          |
| strength (Z)              |                    |                              |

\* Based on 0.4 mm nozzle and 0.2mm layer thickness. High printing speed = 300mm/s, printing temperature = 230 °C


#### **RECOMMENDED PRINTING CONDITIONS**

| Parameter                    |                                                           |
|------------------------------|-----------------------------------------------------------|
| Nozzle temperature           | Classic :190-210 °C                                       |
|                              | High-speed: 210-230 °C                                    |
| Build surface treatment      | PC and Texture PEI (Glue when needed)                     |
| Build plate temperature      | 30 - 60 (°C)                                              |
| Cooling fan                  | ON                                                        |
| Printing speed               | Classic :50-100mm/s                                       |
|                              | High-speed: 100-300mm/s                                   |
| Retraction distance          | 1 - 3 (mm)                                                |
| Retraction speed             | 20 - 40 (mm/s)                                            |
| Closure Chamber              | No Needed                                                 |
| Recommended support material | PolySupport <sup>™</sup> and PolyDissolve <sup>™</sup> S1 |
| Drying setting               | 55°C for 6h                                               |
|                              |                                                           |

\* Based on 0.4 mm nozzle. Printing conditions may vary with different nozzle diameters

#### **TENSILE TESTING SPECIMEN**

ISO 527, GB/T 1040







| Printing temperature      | 210 °C/230 °C       |
|---------------------------|---------------------|
| Bed temperature           | 50 °C               |
| Shell                     | 2                   |
| Top & bottom layer        | 3                   |
| Infill                    | 100 %               |
| Environmental temperature | Ambient temperature |
| Cooling fan               | ON                  |

#### **DISCLAIMER:**

The typical values presented in this data sheet are intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. Actual values may vary significantly with printing conditions. End- use performance of printed parts depends not only on materials, but also on part design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice.

Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/recycling practices of Polymaker materials for the intended application. Polymaker makes no warranty of any kind, unless announced separately, to the fitness for any use or application. Polymaker shall not be made liable for any damage, injury or loss induced from the use of Polymaker materials in any application.