

Innovators in 3D printing

Technical Data Sheet

PolyMide[™] PA6-CF

www.polymaker.com

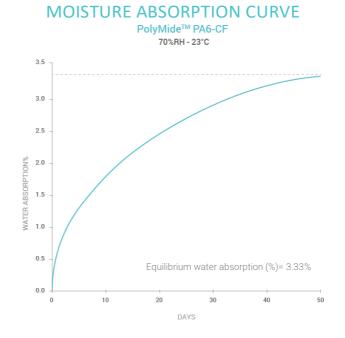
V5.4

PolyMide[™] PA6-CF is a carbon fiber reinforced PA6 (Nylon 6) filament. The carbon fiber reinforcement provides significantly improved stiffness, strength and heat resistance with outstanding layer adhesion.

PHYSICAL PROPERTIES

Property	Testing Method	Typical Value
Density	ISO1183, GB/T1033	1.17 g/cm ³ at 23°C
Melt index	300°C, 2.16 kg	20.5 g/10min
Light transmission	N/A	N/A
Flame retardancy	N/A	N/A
Sheet Resistance in Moisture State	ASTM D991 (GB/T 2439, ISO 1853)	1 – 10 (10 ⁸ Ω/sq)

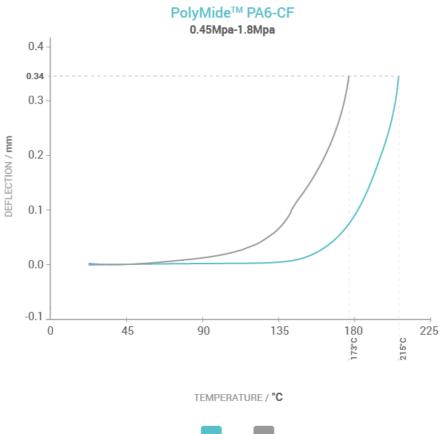
CHEMICAL RESISTANCE DATA


Property	Typical Value
Effect of weak acids	Poor
Effect of strong acids	Poor
Effect of weak alkalis	Fair
Effect of strong alkalis	Poor
Effect of oils and grease	Good

Note:

Good: Material may get minor attack after long periods of storage with chemical at ambient temperature

- Fair: Material can be used for short time contact with chemical at ambient temperature


- Poor: Material becomes unstable on contact with chemical at ambient temperature

THERMAL PROPERTIES

Property	Testing Method	Typical Value
Glass transition temperature	DSC, 10°C/min	74 °C
Melting temperature	DSC, 10°C/min	219 °C
Crystallization temperature	DSC, 10°C/min	185 °C
Decomposition temperature	TGA, 20°C/min	>370 °C
Vicat softening temperature	ISO 306, GB/T 1633	N/A
Heat deflection temperature	ISO 75 1.8MPa	173 °C
Heat deflection temperature	ISO 75 0.45MPa	215 °C

HDT CURVE

MECHANICAL PROPERTIES (Dry Status)

Property	Testing Method	Typical Value
Young's modulus (X-Y)	ISO 527, GB/T 1040	8637 ± 211 MPa
Young's modulus (Z)		3760 ± 119 MPa
Tensile strength (X-Y)	ISO 527, GB/T 1040	109.3 ± 2.4 MPa
Tensile strength (Z)		54.0 ± 5.2 MPa
Elongation at break (X-Y)	ISO 527, GB/T 1040	2.1 ± 0.2 %
Elongation at break (Z)		1.9 ± 0.4 %
Bending modulus (X-Y)	ISO 178, GB/T 9341	7038 ± 205 MPa
Bending modulus (Z)		N/A
Bending strength (X-Y)	ISO 178, GB/T 9341	161.0 ± 3.9 MPa
Bending strength (Z)	130 176, GD/ 1 9341	N/A
Notched Charpy impact		10.95 ± 0.3 kJ/m ²
strength (X-Y)	ISO 179, GB/T 1043	
Notched Charpy impact	130 179, GD/1 1043	N/A
strength (Z)		

*All specimens were annealed at 80°C for 6h and dried for 48h prior to testing

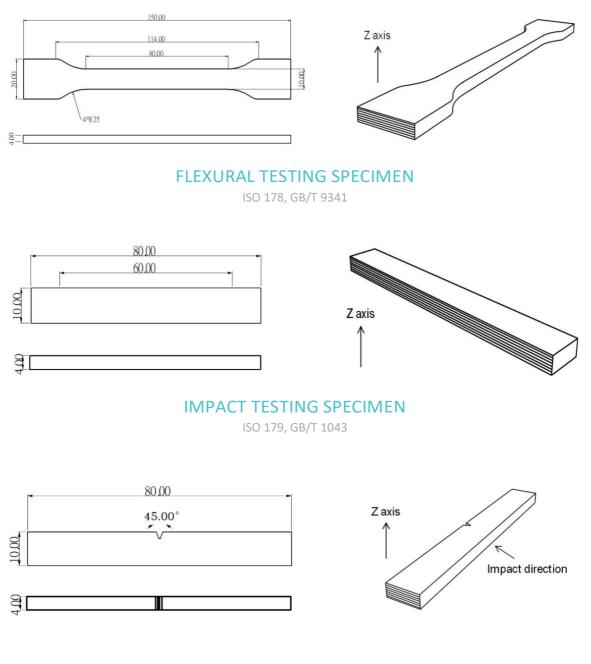
MECHANICAL PROPERTIES (Wet Status)

Property	Testing Method	Typical Value
Young's modulus (X-Y)	ISO 527, GB/T 1040	2508 ± 83 MPa
Young's modulus (Z)		1056 ± 128 MPa
Tensile strength (X-Y)	ISO 527, GB/T 1040	54.7 ± 1.1 MPa
Tensile strength (Z)		25.5 ± 1.2 MPa
Elongation at break (X-Y)	ISO 527, GB/T 1040	7.0 ± 0.9 %
Elongation at break (Z)		6.7 ± 1.7 %
Bending modulus (X-Y)	ISO 178, GB/T 9341	2286 ± 185 MPa
Bending modulus (Z)		N/A
Bending strength (X-Y)	ISO 178, GB/T 9341	64.9 ± 4.9 MPa
Bending strength (Z)		N/A
Notched Charpy impact		35.6 ± 1.2 kJ/m ²
strength (X-Y)	ISO 179, GB/T 1043	
Notched Charpy impact	130 179, 30/1 1043	N/A
strength (Z)		

*All specimens were annealed at 80°C for 6h, and immerged in water at 60° C for 48h prior to testing. The average moisture content of specimens is 5.30%

RECOMMENDED PRINTING CONDITIONS

Parameter	
Nozzle temperature	280 - 300 (°C)
Build surface treatment	PC and Texture PEI (Glue when needed)
Build plate temperature	25 - 50 (°C)
Cooling fan	OFF
Printing speed	50 - 300 (mm/s)
Retraction distance	3 - 6 (mm)
Retraction speed	40 - 60 (mm/s)
Closure Chamber	Needed (ambient temperature)
Recommended support material	PolyDissolve™ S1
Drying setting	100°C for 8h
Annealing setting	80°C for 6 h


* Based on 0.4 mm nozzle. Printing conditions may vary with different nozzle diameters

Note:

- Abrasion of the brass nozzle happens frequently when printing PolyMide[™] PA6-CF. Normally, the life of a brass nozzle would be approximately 9h. A wear-resistance nozzle, such as hardened steel and ruby nozzle, is highly recommended to be used with PolyMide[™] PA6-CF.
- PolyMide[™] PA6-CF is sensitive to moisture and should always be stored and used under dry conditions (relative humidity below 20%).
- If PolyMide[™] PA6-CF is used as the support material for itself, please remove the support structure before excessive moisture absorption. Otherwise, the support structure can be permanently bonded to the model.
- After the printing process, it is recommended to anneal the model in the oven at 80 100°C for 6 hours.

TENSILE TESTING SPECIMEN

ISO 527, GB/T 1040

HOW TO MAKE SPECIMENS

Printing temperature	290 °C
Bed temperature	50 °C
Shell	2
Top & bottom layer	3
Infill	100%
Environmental temperature	Ambient temperature
Cooling fan	OFF

DISCLAIMER:

The typical values presented in this data sheet are intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. Actual values may vary significantly with printing conditions. End- use performance of printed parts depends not only on materials, but also on part design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice.

Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/ recycling practices of Polymaker materials for the intended application. Polymaker makes no warranty of any kind, unless announced separately, to the fitness for any use or application. Polymaker shall not be made liable for any damage, injury or loss induced from the use of Polymaker materials in any application.