

Technical Data Sheet

PolyMax[™] PC-FR

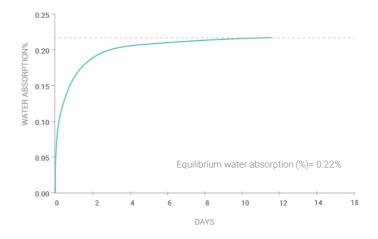
PolyMax™ PC-FR

PolyMax™ PC-FR, creation from Covestro's Makrolon® family, could achieve V0 performance in the UL94 flame retardancy test and displays excellent toughness, strength and heat resistance. This filament opens new applications in the automotive, railway and aerospace industries.

PHYSICAL PROPERTIES

Property	Testing Method	Typical Value
Density	ISO1183, GB/T1033	1.2 g/cm ³ at 23°C
Melt index	260°C, 5 kg	12-17 g/10min
Light transmission	N/A	N/A
Flame retardancy	UL94	VO

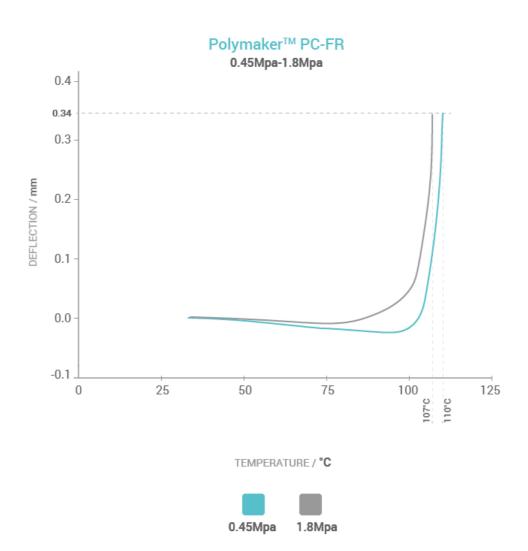
CHEMICAL RESISTANCE DATA


Property	Typical Value
Effect of weak acids	Good
Effect of strong acids	Poor
Effect of weak alkalis	Fair
Effect of strong alkalis	Poor
Effect of oils and grease	Good

Note:

- Good: Material may get minor attack after long periods of storage with chemical at ambient temperature
- Fair: Material can be used for short time contact with chemical at ambient temperature
- Poor: Material becomes unstable on contact with chemical at ambient temperature

MOISTURE ABSORPTION CURVE


PolyMax™ PC-FR 70%RH - 23°C

THERMAL PROPERTIES

Property	Testing Method	Typical Value
Glass transition temperature	DSC, 10°C/min	115 °C
Melting temperature	DSC, 10°C/min	N/A
Crystallization temperature	DSC, 10°C/min	N/A
Decomposition temperature	TGA, 20°C/min	N/A
Vicat softening temperature	ISO 306 GB/T 1633	116 °C
Heat deflection temperature	ISO 75 1.8MPa	107 °C
Heat deflection temperature	ISO 75 0.45MPa	110 °C

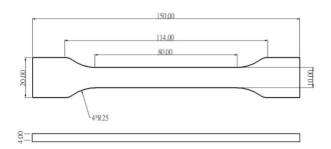
HDT CURVE

MECHANICAL PROPERTIES

Property	Testing Method	Typical Value
Young's modulus (X-Y)	ISO 527, GB/T 1040	2634 ± 182 MPa
Young's modulus (Z)	150 527, GB/T 1040	2743 ± 72 MPa
Tensile strength (X-Y)	ICO 527 CD/T 1040	67 ± 4.5 MPa
Tensile strength (Z)	ISO 527, GB/T 1040	46 ± 4.8 MPa
Elongation at break (X-Y)	ISO 527, GB/T 1040	3.49 ± 0.7 %
Elongation at break (Z)	130 327, GB/1 1040	2.2 ± 0.3 %
Bending modulus (X-Y)	ISO 178, GB/T 9341	2518 ± 53 MPa
Bending modulus (Z)	130 170, GB/ 1 9341	N/A
Bending strength (X-Y)	ISO 178, GB/T 9341	96.6 ± 1.3 MPa
Bending strength (Z)	130 176, GB/1 9341	N/A
Notched Charpy impact		11.7 ± 1.6 kJ/m ²
strength (X-Y)	ISO 179, GB/T 1043	
Notched Charpy impact	130 179, 96/1 1043	N/A
strength (Z)		
Low temperature impact	ISO 179-1/1eA:2010,	$7.5 \pm 1.6 \text{ kJ/m}^2$
strength (X-Y)	-30°C	

RECOMMENDED PRINTING CONDITIONS

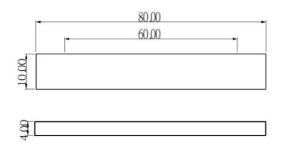
Parameter	
Nozzle temperature	250 − 270 (°C)
Build surface treatment	Texture PEI (Glue when needed)
Build plate temperature	90 - 105 (°C)
Cooling fan	OFF
Printing speed	50 - 200 (mm/s)
Retraction distance	1 - 3 (mm)
Retraction speed	20 - 40 (mm/s)
Closure Chamber	Needed (70-100°C)
Recommended support material	-
Drying setting	75°C for 6h
Annealing setting	90°C for 2h
	1.1 1.66

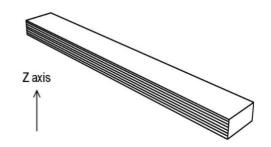

^{*} Based on 0.4 mm nozzle. Printing conditions may vary with different nozzle diameters

Note:

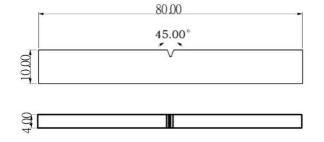
- When printing with PolyMax™ PC-FR, it is recommended to use an enclosure. For large part, it is recommended to use a heated chamber.
- It is recommended to anneal the printed part right after the printing process to release the residual internal stress. Annealing settings: 90°C for 2h

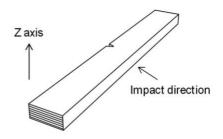
TENSILE TESTING SPECIMEN


ISO 527, GB/T 1040



FLEXURAL TESTING SPECIMEN


ISO 178, GB/T 9341



IMPACT TESTING SPECIMEN

ISO 179, GB/T 1043

HOW TO MAKE SPECIMENS

Printing temperature	260 °C
Bed temperature	100 °C
Shell	2
Top & bottom layer	3
Infill	100%
Environmental temperature	90°C
Cooling fan	OFF

DISCLAIMER:

The typical values presented in this data sheet are intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. Actual values may vary significantly with printing conditions. End- use performance of printed parts depends not only on materials, but also on part design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice.

Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/recycling practices of Polymaker materials for the intended application. Polymaker makes no warranty of any kind, unless announced separately, to the fitness for any use or application. Polymaker shall not be made liable for any damage, injury or loss induced from the use of Polymaker materials in any application.