For other languages, please visit www.polymaker.com
INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Printing with PolyMide™ PA6-CF</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Printing settings</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Bed surface</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Wear resistant nozzle</td>
<td>5</td>
</tr>
<tr>
<td>1.4 High temperature hot end</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Annealing PolyMide™ PA6-CF</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Support material</td>
<td>6</td>
</tr>
<tr>
<td>1.7 Feeding system</td>
<td>7</td>
</tr>
<tr>
<td>1.8 Dry box system</td>
<td>7</td>
</tr>
<tr>
<td>2.0 PCP: Profile Creation Process</td>
<td>8</td>
</tr>
<tr>
<td>3.0 PolyMide™ family</td>
<td>9</td>
</tr>
<tr>
<td>4.0 Fiber Adhesion™ technology</td>
<td>10</td>
</tr>
<tr>
<td>5.0 Material development</td>
<td>11</td>
</tr>
<tr>
<td>6.0 Polymaker products</td>
<td>12</td>
</tr>
<tr>
<td>7.0 Polymaker technologies</td>
<td>13</td>
</tr>
<tr>
<td>8.0 About Polymaker</td>
<td>14</td>
</tr>
<tr>
<td>9.0 Contact us</td>
<td>15</td>
</tr>
</tbody>
</table>
Printing with PolyMide™ PA6-CF

PolyMide™ PA6-CF

PolyMide™ PA6-CF is a carbon fiber reinforced PA6 (Nylon 6) filament. The carbon fiber reinforcement provides significantly improved stiffness, strength and heat resistance with outstanding layer adhesion.

Printing settings

- Nozzle Temperature: 280-300 °C
- Bed Temperature: 25-50 °C (Do NOT exceed 50 °C)
- Chamber Temperature: 25-50 °C (Do NOT exceed 50 °C)
- Printing Speed: 60 mm/s
- Cooling Fan: OFF

Note: Settings are based on 0.4 mm nozzle, and may vary with different printers and nozzle diameters.

Bed surface

PolyMide™ PA6-CF can be printed on almost any surface with a thin coat of PVA glue or Magigoo PA. We recommend a flex plate to facilitate the removal of the model from the plate.
Wear resistant nozzle

PolyMide™ PA6-CF contains 20% chopped carbon fibers by weight which makes it very abrasive. It is important to have an abrasion resistant nozzle.

Nozzles can come in many different materials, from soft to hard:

- Brass
- Nickel plated copper
- Steel
- Stainless steel
- Tool steel
- Tungsten-carbide
- Ceramic/Metal hybrid

PolyMide™ PA6-CF can easily damage a brass nozzle after a few hundred grams of printing. Hardened nozzles are more expensive than regular brass nozzle so it is important to consider the amount of materials planned to be used. It is sometimes more cost effective to destroy one nozzle for some prints.

Note: Brass nozzle will give a better thermal conductivity than hardened nozzle such as stainless steel.
High temperature hot end

We recommend a full metal hot end that can maintain a stable temperature of at least > 280 °C.

Annealing PolyMide™ PA6-CF parts

We recommend annealing all models printed in PolyMide™ PA6-CF. This allows users to take advantage of the full mechanical and thermal properties of this material.

The annealing process consists of putting the model in an oven at 90 °C for 2 hours.

Support material

PolyDissolve™ S1 is the recommended support material for PolyMide™ PA6-CF. For more information, please visit www.polymaker.com

When using PolyMide™ PA6-CF as a self-support, it is important to remove the support structure right after printing.

Leaving the part exposed to atmospheric moisture may result in strong bonding between the support and printed part, making support removal difficult.
--- Feeding system

PolyMide™ PA6-CF is a very stiff filament so it is required to have a good set up to ensure a good feeding. For example we recommend avoiding excessive bending in the filament guide system.

--- Dry box system

PolyMide™ PA6-CF is a polyamide 6 based material which makes it very hygroscopic, meaning that it will tend to absorb moisture quite easily. The absorbed moisture in the filament can compromise the process by creating gas in the hot end lowering the quality and mechanical properties of the final print.

We recommend storing PolyMide™ PA6-CF in the PolyBox™ to prevent moisture absorption. If the filament has absorbed moisture it can be dried at 80°C for 12 hours in a convection oven.

Note: Polymaker provides the filament with the right moisture amount, having a filament with an extremely low moisture content can affect its processability.
PCP: Profile Creation Process

The profile creation process (PCP) allows users to rapidly develop a printing profile for a given material/printer. It is important to consider all of these factors to build a profile.

Polymaker came up with a process which allows you to build your own profile considering the material, printer and environment. This base profile will then be used to create the custom profile taken in account the model geometry and purpose. Indeed the process is also designed to let you learn more about the 3D printing process and therefore give you the skills and knowledge to troubleshoot your prints.

The PCP is available on www.polymaker.com

The PCP is divided in 5 steps:

- Step 1: Extrusion Flow
- Step 2: Flow Management
- Step 3: Cooling Fan
- Step 4: Warpage
- Step 5: Fine Details

It uses less than 300g of materials and less than 7h of working time.

Each of these steps has a specific objective and introduce an important concept about the FFF 3D printing process. Each step will also give you the possibility to push your test further for more accurate results.
PolyMide™ Family

Heat deflection temp.
ASTM D648 (ISO 75)

<table>
<thead>
<tr>
<th>Material</th>
<th>HDT-A</th>
<th>HDT-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolyMide™ PA6-CF</td>
<td>196 °C</td>
<td>215 °C</td>
</tr>
<tr>
<td>PolyMide™ PA6-GF</td>
<td>124 °C</td>
<td>191 °C</td>
</tr>
<tr>
<td>Unreinforced PA6</td>
<td>80 °C</td>
<td>96 °C</td>
</tr>
<tr>
<td>PolyMide™ CoPA</td>
<td>71 °C</td>
<td>91 °C</td>
</tr>
</tbody>
</table>

1.80 Mpa HDT-A
0.45 Mpa HDT-B

Heat deflection temp.
ASTM D648 (ISO 75)

Young’s modulus
ASTM D638 (ISO 527, GB/T 1040)

<table>
<thead>
<tr>
<th>Material</th>
<th>Modulus</th>
<th>Impact Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolyMide™ PA6-CF</td>
<td>7453 Mpa</td>
<td>13.3 kJ/m²</td>
</tr>
<tr>
<td>PolyMide™ PA6-GF</td>
<td>4431 Mpa</td>
<td>16.5 kJ/m²</td>
</tr>
<tr>
<td>Unreinforced PA6</td>
<td>2621 Mpa</td>
<td>9.9 kJ/m²</td>
</tr>
<tr>
<td>PolyMide™ CoPA</td>
<td>2223 Mpa</td>
<td>9.6 kJ/m²</td>
</tr>
</tbody>
</table>

Charpy impact resistance
ASTM D256 (ISO 179, GB/T 1043)

Note: Tested with 3D printed specimens.
Fiber Adhesion™ Technology

Fiber Adhesion technology dramatically improves the Z-axis strength, via engineering the surface chemistry of the fibers to achieve a strong fiber/matrix bonding.

In contrast to conventional fiber-reinforced filaments, which exhibit considerable reduction in Z-axis strength, PolyMide™ PA6-CF actually has higher interlayer adhesion compared to unreinforced PA6.

Layer adhesion

<table>
<thead>
<tr>
<th>Tensile strength (Z axis)</th>
<th>ASTM D638 (ISO 527, GB/T 1040)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unreinforced PA6</td>
<td>53.2Mpa</td>
</tr>
<tr>
<td>PolyMide™ PA6-CF</td>
<td>67.7Mpa</td>
</tr>
</tbody>
</table>

+27%

Competitor 1
35% CF by weight
PA12
48 Mpa
PA12-CF
28.9 Mpa

-40%

Competitor 2
20% CF by weight
PA6/66
23 Mpa
PA6/66-CF
18 Mpa

-40%

Competitor 3
20% GF by weight
PA6/66
23 Mpa
PA6/66-GF
15 Mpa

-35%

Competitor 4
20% GF by weight
PA6
28 Mpa
PA6-GF
21 Mpa

-25%
Material Development

If your application requires a specific material that is not yet available in the market, consider our custom development service. With our talented material scientists and application engineers, we are ready to develop the needed material to enable your unique application.

- Twin-screw compounding
- Single-screw extrusion
- Torque rheometry
- Wet chemistry
- Other polymer processing equipment

- Thermal characterization (DSC, softening point)
- Mechanical testing (tensile, 3-point bending)
- Optical microscopy
- Capillary rheometry
- FTIR-ATR

- 3D printing
- Post-processing
- Application development

Our state-of-the art R&D facilities, allow us to engineer materials at different levels and fully optimize them for 3D printing. Our goal is to deliver materials with right combination of properties/functions, processability and form to suit your needs!
Polymaker products

PolyLite™
- PLA
- PETG
- ABS
- PC
- ASA

PolyMax™
- PLA
- PETG
- PC

PolyFlex™
- TPU95

PolyMide™
- CoPA
- PA6-CF
- PA6-GF

PolyDissolve™
- S1

Specialty
- PolyWood™
- PolySmooth™
- PolySupport™
- PolyCast™

Hardware
- PolyBox™
- Polyshér™

More products coming soon...
Technologies

JAM-FREE™
Regular PLA
- With Jam-Free™

ASH-FREE™
Without Ash-Free™
- Ash content: 0.5%
- With Ash-Free™
- Ash content: 0.003%

WARP-FREE™
Regular Nylon
- With Warp-Free™

STABILIZED FOAMING™
Wood
- Stabilized Foaming™

LAYER-FREE™
Rough surface
- With Layer-Free™

FIBER ADHESION™

NANO-REINFORCEMENT
About Polymaker

Our Values

Customer Oriented Responsible Entrepreneurial Embracing Innovation

Mission

Polymaker is committed to lowering the barriers to innovation and manufacturing, by continuously developing advanced 3D printing material technologies for industries and consumers.
Contact us

For any inquiries please contact:

inquiry@polymaker.com

For technical support please contact:

support@polymaker.com

The information provided in this document is intended to serve as basic guidelines on how particular product can be used. Users can adjust the printing conditions based on their needs and actual situations. It is normal for the product to be used outside of the recommended ranges of conditions. Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/recycling practices of Polymaker materials for the intended application. Polymaker makes no warranty of any kind, unless announced separately, to the fitness for any particular use or application. Polymaker shall not be made liable for any damage, injury or loss induced from the use of Polymaker materials in any particular application.